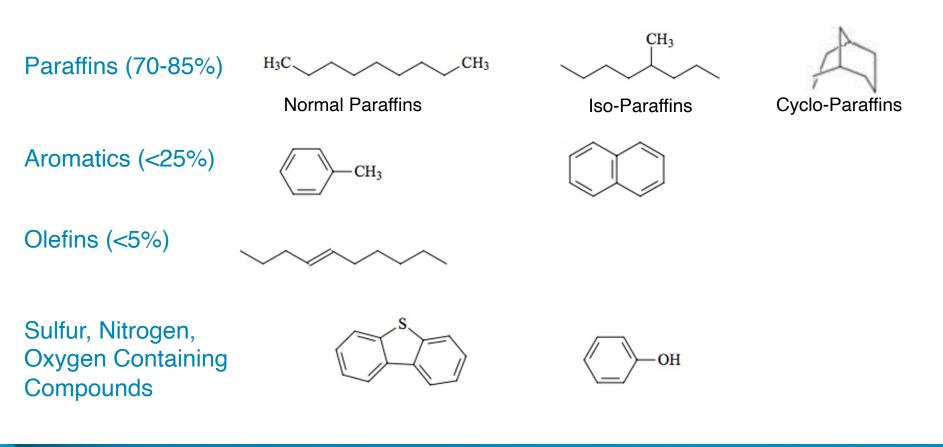
Sustainable Aviation Fuel Feedstock and Pathways

Lina Martinez, Manuel Garcia, Kristin Brandt, Michael Wolcott, WSU Prem Lobo, FAA Program Manager

Oct 27th, 2023


Outline

- Conventional jet fuel
- Sustainable aviation fuel (SAF)
- Feedstock and Conversion Technologies
- Example minimum selling price and abatement cost (US values)

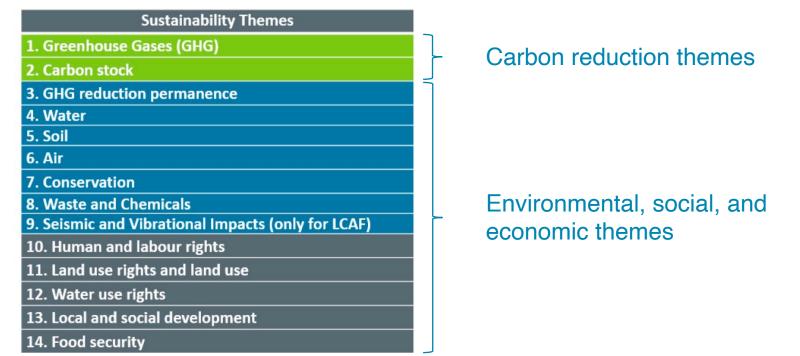
Jet Fuel Composition^[1]

Gasoline: C4-C12 Jet: C8-C16 Diesel: C9-C23

Jet fuel must meet detailed specifications for safety ^[2-3]

Fuel	Jet A	Jet A-1	TS-1	Jet B
Specification	ASTM D 1655	DEF STAN 91-91	GOST 10227	CGSB-3.22
Acidity, mg KOH/g	0.10	0.015	0.7 (mg KOH/100ml)	0.10
Aromatics, % vol, max	25	25.0	22 (% mass)	25.0
Sulfur, mass%	0.30	0.30	0.25	0.40
Sulfur, mercaptan, mass%	0.003	0.003	0.005	0.003
Distillation, °C:				
Initial boiling point	—	Report	150	Report
10% recovered, max	205	205	165	Report
50% recovered, max	Report	Report	195	min 125; max 190
90% recovered, max	Report	Report	230	Report
End point	300	300	250	270
Vapor pressure, kPa, max	—	—	—	21
Flash point, °C, min	38	38	28	—
Density, 15°C, kg/m³	775-840	775-840	min 774@20°C	750-801
Freezing Point, °C, max	-40	-47.0	-50 (Chilling point)	-51
Viscosity, –20°C, mm²/sec, max	8	8.0	8.0 @ −40°C	—
Net Heat of combustion, MJ/kg, min	42.8	42.8	42.9	42.8
Smoke point, mm, min	18	19.0	25	20
Naphthalenes, vol%, max	3.0	3.00	—	3.0
Copper corrosion, 2 hr @ 100°C, max rating	J No. 1	No. 1	Pass (3 hr @ 100°C)	No. 1
Thermal stability				
Filter pressure drop, mm Hg, max	25	25	—	25
Visual tube rating, max	<3	<3	—	<3
Static test 4 hr @ 150°C, mg/100 ml, ma	ax —	—	18	—
Existent gum, mg/100 ml, max	7	7	5	—

- Aircraft and engines are certified for fuel specified in a standard, such as Jet A/A-1 (ASTM D1655).
- If a fuel is not "equivalent" to JetA/A-1, the fuel requires:
 - its own fuel specification,
 - separate handling,
 - and the aircraft and the engine require certification for that fuel
- ASTM D7566: Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

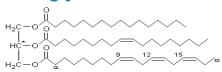


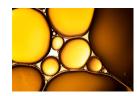
Sustainable Aviation Fuel (SAF)

CORSIA defines SAF as renewable or waste-derived aviation fuels that meet specific sustainability criteria^[4]

Drop-in = fuels are fleetwide and infrastructure compatible

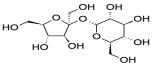
CORSIA Sustainability Criteria^[5]

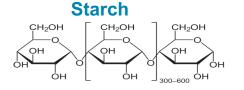




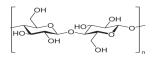
Feedstock

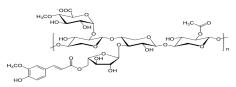
• Lipids


Triglycerides

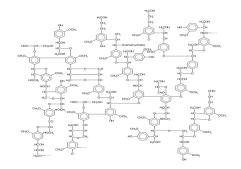


• Sugar and Starch



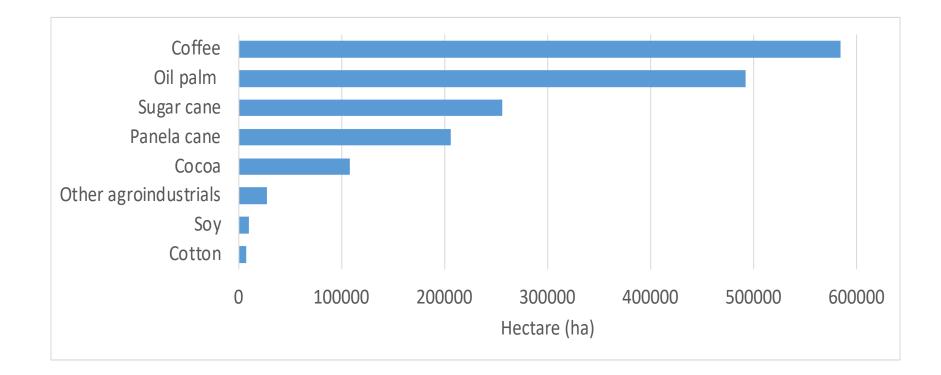


Lignocellulosic


Cellulose

Hemicellulose (Xylan)

Lignin



Colombian agroindustry crops (in productive age or harvested area)

Source: DANE, Encuesta Nacional Agropecuaria. 2020

Potential Feedstock

Inventories and/or studies are required

Main Harvest

Crop	
Palm oil*	

Sugar cane

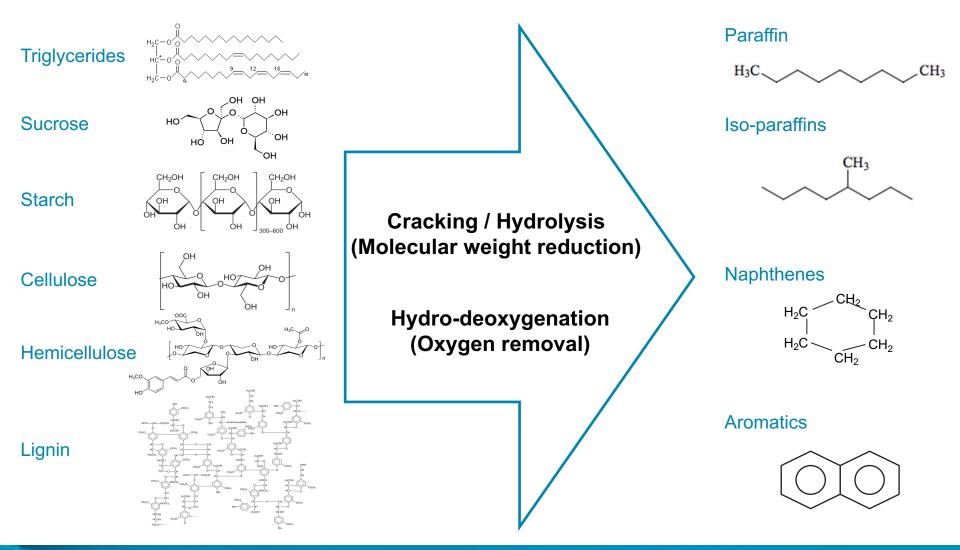
Residues	
Harvest	Residues
Coffee	Pulp
	Husk
	Stem
Palm oil	Empty fruit
	bunch
	Fiber
	Palm shell
	POME
Sugar cane	Leaves-top
	Bagasse
Cacao	Pod shell
	Bean shell
Rice	Straw
	Husk
Corn	Stover
	Cob
	Husk

Wastes
Source
Landfills
Animal fat

Energy Crops

To be developed
Miscanthus
Poplar
Energy canes*
Switchgrass
Eucalyptus*
Willow*

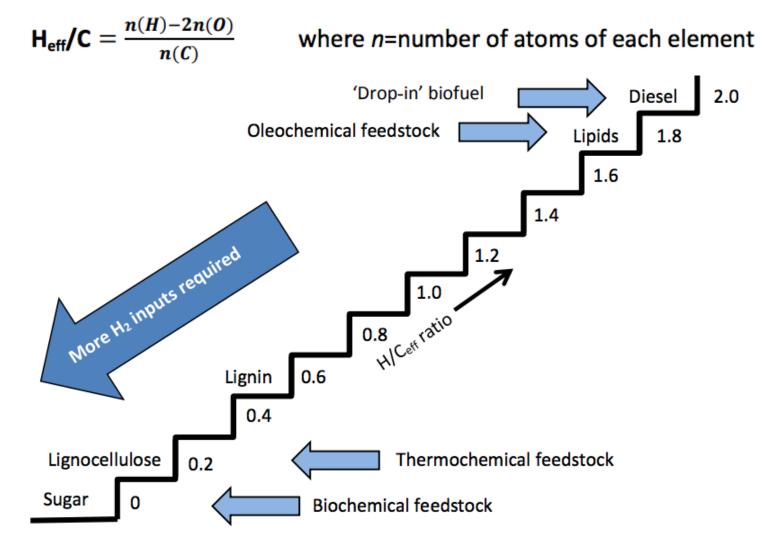
*iLUC calculation is required



Conversion technology

- **Oleochemical:** convert fatty acids using physicochemical methods.
- Biochemical: conversion transforms carbohydrate-rich feedstock into an intermediate product using microorganisms.
- **Thermochemical:** deconstructs macro-molecules of solid biomass using high temperatures and oxygen deficiency.
- **Electrochemical:** uses hydrogen and a concentrated source of CO₂, methane, methanol, or short carbon chain molecules. Also known as power-to-liquid or e-fuels, requires renewable electricity for electrolytic production of hydrogen and a renewable/waste carbon source.

Conversion technology



FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

10

Hydrogen to Carbon Staircase ^[6]

Approved Conversion Pathways (1/2) [7-8]

ASTM D7566	Conversion process	Process Feedstock	Process feedstock sources	Max blend ratio
A1	Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK)	Syngas (CO and H2)	Biomass such as municipal solid waste (MSW), agricultural and forestry residues, wood and energy crops; Industrial off-gases; Non-renewable feedstocks such as coal and natural gas.	50%
A2	Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK)	Fatty acids and fatty acid esters	Bio-oils, animal fat, recycled oils: chicken fat, white grease, tallow, yellow grease, brown grease, purpose-grown plant oils, algal oils, and microbial oils.	50%
A3	Hydroprocessed Fermented Sugars to Synthetic Isoparaffins (HFS-SIP)	Sugars	Sugars from direct (cane, sweet sorghum, sugar beets, tubers, field corn) and indirect sources (C5 and C6 sugars hydrolyzed from cellulose)	10%
A4	Fisher-Tropsch Synthetic Paraffinic Kerosene with Aromatics (FT-SPK/A)	Syngas	Same as A1, with the addition of some aromatics derived from non-petroleum sources	50%
A5	Alcohol to Jet Synthetic Paraffinic Kerosene (ATJ-SPK)	Ethanol and isobutanol	C2-C5 alcohols derived from direct and indirect sources of sugar (see A3), or those produced from the microbial conversion of syngas	50%
A6	Catalytic hydrothermolysis jet fuel (CHJ)	Fatty acids and fatty acid esters	Same as A2	50%
A7	Synthesized paraffinic kerosene from hydrocarbon - hydroprocessed esters and fatty acids (HC-HEFA-SPK)	Algal oils	Specifically, bio-derived hydrocarbons, fatty acid esters, and free fatty acids. Recognized sources at present only include the tri-terpenes produced by the Botryococcus braunii species of algae.	10%
A8	ATJ derivative starting with the mixed alcohols (ATJ-SKA)		C_2 to C_5 alcohols	TBD

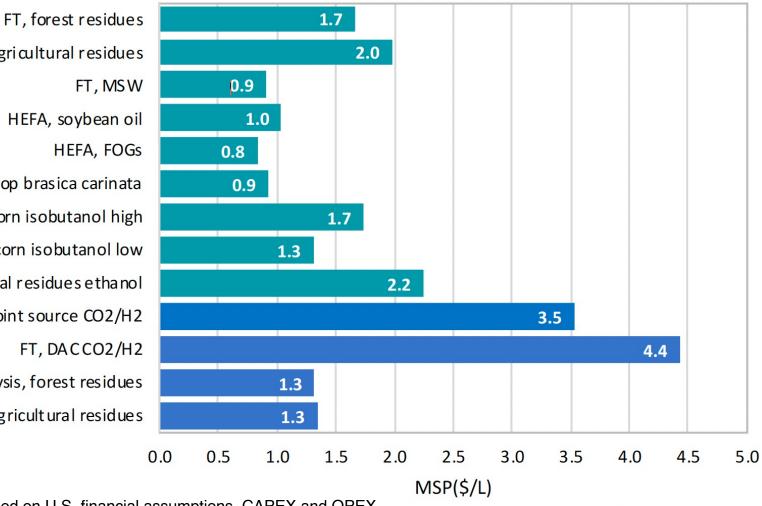
Approved Conversion Pathways (2/2) [7-8]

ASTM Reference	Conversion process	Process Feedstock	Process feedstock sources	Max blend ratio
D1655 A1	Co-hydroprocessing of esters and fatty acids in a conventional petroleum refinery	Fat, oils, greases	Fats, oils, and greases (FOG) co- processed with petroleum	5%
	Co-hydroprocessing of Fischer-Tropsch hydrocarbons in a conventional petroleum refinery	Syngas (CO and H2)	Fischer-Tropsch hydrocarbons co- processed with petroleum	5%
	Co-hydroprocessing of biomass	non-petroleum sources such as coal, natural gas, biomass, fatty acid esters and fatty acids	Gasification, Fischer-Tropsch synthesis, and hydroprocessing	5%

Conversion processes under evaluation [8-9]

- Synthesized aromatic kerosene
- Integrated hydropyrolysis and hydroconversion of lignocellulosic materials
- ATJ derivative utilizing biochemical production of isobutane
- Single reactor HEFA
- Pyrolysis of non-recyclable plastics
- Co-processing of pyrolysis oil from used tires

Commercial or near commercial pathways


	HEFA	ATJ	GFT
Feedstock cost	High	Medium	Low
Yield	High	Low*/High**	Low
Conversion cost	Low	Medium	High

*Second-generation alcohols **First-generation alcohols

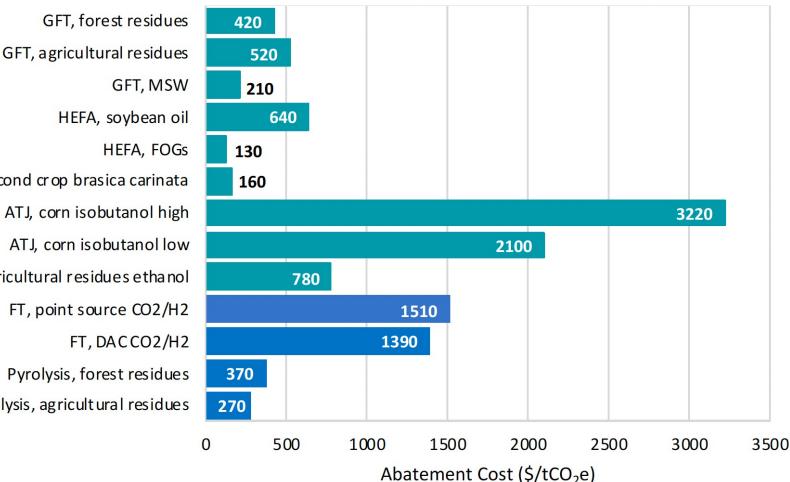
 $Minimum Fuel Selling Price = \frac{Feedstock Price + Conversion Cost}{Product Yield}$ [10]

MSP, nth plants^{* [11]}

FT, agricultural residues FT, MSW HEFA, soybean oil HEFA, FOGs HEFA, second crop brasica carinata ATJ, corn isobutanol high ATJ, corn isobutanol low ATJ, agricultural residues ethanol FT, point source CO2/H2 FT, DACCO2/H2 Pyrolysis, forest residues Pyrolysis, agricult ural residues

*MSP estimated based on U.S. financial assumptions, CAPEX and OPEX DAC= Direct Air Capture

CO₂ Abatement cost, nth plants


Abatement Cost
$$\left(\frac{\$}{tCO_2e}\right) = \frac{SAFMSP - petroluem jet price}{SAFLS_f - petroleum jet LS_f}$$

- MSP = minimum selling price
- SAF and conventional processes are \$/MJ
- LS_f is the emissions tCO2e/MJ
- Petroleum jet process assumed to be \$0.5/L¹ = \$0.015/MJ

¹ 2017 – 2019 US EIA average

CO₂ Abatement cost, nth plants^{*[11]}

HEFA, FOGs HEFA, second crop brasica carinata ATJ, corn isobutanol high ATJ, corn isobutanol low ATJ, agricultural residues ethanol FT, point source CO2/H2 FT, DACCO2/H2 Pyrolysis, forest residues Pyrolysis, agricultural residues

*Abatement cost estimated based on U.S. financial assumptions, CAPEX and OPEX FT, MSW assumes 16% non-biogenic carbon

QUESTIONS

FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

19

References

[1] Rahmes et al. 2009. Sustainable Bio-Derived Synthetic Paraffinic Kerosene (BioSPK)Jet Fuel Flights and Engine Tests Program Results. 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Hilton Head, SC.

[2] Chevron Corporation. 2007. Aviation Fuels: Technical Review. Chevron Products Company. https://www.chevron.com/-/media/chevron/operations/documents/aviation-tech-review.pdf

[3] Heyne, J et al. 2022. Perspectives on Fully Synthesized SAF. Spring ASCENT meeting.

[4] ICAO. 2018. Annex 16 to the Convention on International Civil Aviation , Volume IV.

[5] ICAO. 2022. CORSIA Sustainability Criteria for CORSIA Eligible Fuels.

[6] Karatzos, Sergios, James D. McMillan, and Jack N. Saddler. "The potential and challenges of drop-in biofuels." Report for IEA Bioenergy Task 39 (2014).

[7] Commercial Aviation Alternative Fuels Initiative - see www.caafi.org I

[8] ICAO. Conversion Processes <u>https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx</u>

[9] Csonka et al. 2022. New Sustainable Aviation Fuels (SAF) technology pathways under development. https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2022/ENVReport2022_Art49.pdf

[10] Lange et al. 2016. Biorenewables at Shell: Biofuels. <u>https://onlinelibrary.wiley.com/doi/10.1002/9781118843796.ch23</u>

[11] ICAO. 2023. SAF Rules of Thumb. https://www.icao.int/environmental-protection/Pages/SAF_RULESOFTHUMB.aspx

